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i. Introduction

The problem of active feedback stabilizing flexible structures is of

recent interest especially for deployment in space [1]. A significant feature

of this application is the need for "robust" controllers - whose design does

not require precise knowledge of system parameters -- see [2]. Although a

class of such linear stabilizing control laws is given in [2], it would

appear that to generate the control effort necessary, the actuators (reaction

jets, for example), would need to be nonlinear: linear for small amplitudes

but nonlinear (saturating-type) for large amplitudes.

Another feature of the space application is the uncertainty in the damping

parameters (even including the model). The strong stabilizability using

linear controllers requires controllability and this was established in [2]

neglecting damping; but the proof of controllability when damping is present

is unclear. In this paper we show that for a reasonable damping model the

robust linear controller still yields strong stability under a natural

extension of a condition involving the undamped modes used in [2]. Under the

asumption that there is nonzero natural damping, however small, we prove that

we have strong stability for a class of nonlinear feedback control laws which

are linear for small amplitudes and can saturate for larGe amplitudes.

We only treat the abstract wave-equation version of the problem: the

reduction of the physical model (biharmonic beam equations with delta-function

controls) to the abstract form is given in [3]. We only note here one feature

of the problem: the differential operators do not involve any "boundary

conditions": and although the control is exerted on the boundary, the formula-

tion does not fall into the class of boundary-control problems treated by
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Lasiecka and Triggiani [41 so that in particular the results therein are not

directly applicable.

Finally we note that our results may be regarded as an extension of

the Benchimol-Slemrod result [5] (see Levan [ 6] for a recent treatment) to

a class of nonlinear controllers but without invoking controllability -- albeit

in a particular case. Our proof, although totally elementary, relies heavily

on the eigenfunction decomposition of the generator. The problem statement

and the main results are in Section 2.

2. General Results

Let H denote a separable Hilbert space and let us consider the follow-

ing canonical abstract differential equation characterizing the response

x(t) of a flexible structure to the applied input u(t):

Mx(t) + Dk(t) + Ax(t) + Bu(t) = 0 (2.1)

where M is a self-adjoint positive definite (zero is in the resolvent spec-

trum) linear bounded operator mapping H into H;

A is a self-adjoint nonnegative definite closed linear operator with

dense domain and with compact resolvent; we shall (for simplicity) also

assume that zero is in the resolvent set.

D is a self-adjoint nonnegative definite closed linear operator whose

domain includes that of /A; and

B is a finite-dimensional linear operator mapping Rm  into H.

I L
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The next step is to introduce the "energy norm" space, which we shall

denote by HE. On the product space

D(V) x H (2.2)

we can introduce the "energy" inner product:

(YZ]E [/A yl' /A zl] + [My 2, z ] (2.3)

where

yl
Y , Z = i(2.4)

Y2 z2

and complete the space in this inner product to yield HE. To avoid confu-

sion we shall use a subscript E to denote the inner product in HE" Let

A denote the operator

A =(2.5)
_M-IA _M 1 D

with domain:

[() y, yl eV(A) -

D(A) Y D(/A (2.6)

We shall now show that A is closed.

Yl,n = Y GD(A); Y y= Yl

n nY2 ,n Y2

Zln = Z = Z Z Z

n n
z2 ,n2
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where

Z In = 2,n (2.7)

Mz 2 , = -Ay1  -~ Dy 2 , (2.8)

and

11Z - 112~ iVA- (zin z 11 2 + [(M(Z1  z) (z2  z)

Since (VA'~ has a bounded inverse, it follows that

z ,n = (,'A-)l (ri z 1,)

converges. But by (2.7)

Y2, = z n

so that

{y 2 }n and {,VrA y 2 ,n

are Cauchy. Now since domain of D includes that of vrA

D (VA-)

is linear bounded, and hence

Dy 2 ,n = D(vA) 1 (VAyi 2 ,n

converges. Since the left side of (2.8) is Cauchy, this implies that

{ Ay1 ,n }

is Cauchy, and of course {y 1' is Cauchy. Hence we see that A is closed.

Since

00



with same domain as A, and for Y in D(A):

[AY, Y] + (A*Y, Yi E -2[Dy 2, y2] (2.9)

where

y = i

we see that A and A* are dissipative, and hence (7 1 A generates a

strongly continuous contraction semigroup which we shall denote S(t),

t a 0. Let A 0denote the "undamped" generator:

00

0
4 AM A

with domain

- Y2 D1~ (A)]

Let

0 '0

is compact. From the easily verified resolvent equation:

R(x, A) = R(x, A 0) [i + VRcA,A)i (2.10)

it follows that RCA,A) is compact, since VR(X,A) is bounded.

Rewriting (2.1) as

Y~t) =AY(t) + Bu(t) (.1
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where

x (t)

4, Yxtt)

0
Bu =

-M 1 Bu

we see that (2.11) has the "mild" solution:

t
Y(t) = S(t) Y(0) + f S(t-C) Bu(C) do (2.12)

0

Let S(-) denote the semigroup generated by AO. Let {Ok } denote

the eigenvectors of

-1 2
M A 0k = Wk Ok

orthonormalized so that

MO j] = 6k
~k' 6.J

, 2
and such that w are monotone increasing. Note that these are the undamped• Wk

or "natural" modes.

We shall say that a (time-invariant) "feedback" control

u(t) = K(Y(t)) (2.13)

where K(-) maps HE  into Rm, "stabilizes" the system (2.11) if

t
Y(t) = S(t) Y(0) + f S(t-o) BK(Y(o)) do

0

has a unique strongly continuous solution such that it is globally stable.

That is to say
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IY (t)II1E 41 0 a s t

for every initial Y(0).

We begin with linear controllers.

THEOREM 2.1. Suppose

(4, (D +BB), k 0 (2.14)

for every k. Then the linear feedback control

u(t) = PB*Y(t) (2.15)

where P is positive definite and has a bounded inverse, yields global

asymptotic stability.

Conversely, (2.14) is necessary if these controls are to yield global

stability.

4, Proof. To begin with we assume that the strong version of (2.11) is

satisfied:

M3R(t) + Dk(t) + Ax(t) + Bu(t) =0 .(2.16)

Let

2

1 ( [V'Ax(t) , rAxt) + [Mk(t) , k(t)1 (2.17)
2

Then

dt

= -[(D + X(t)BB*)k(t), k(t)] (2.19)

where

X(t) = [utBct1(2.20)

IB*;c(t) 12

= 0 

if IB* 5c(t)ll 0
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From (2.18) we obtain that

E(t) is monotone nonincreasing in t

and that

E(O) - E(-) =f [ Dk(t), k(t)]I dt + f X (t)[(B**c(t) , B**(t)] dt . (2.21)
*0 0

Hence if we consider first the choice

u(t) =B*k(t) (2.22)

or equivalently

4 A(t) =1

we have correspondingly

f [Dk(t) , :'t)]I dt + f [B**k(t) , B-'k(t) I dt = E(O) -E(-) <
0 (

(2.23)

To prove global stability, it is enough to show that

E(- 0

in (2.21), or in (2.23). Next let

a k(t) = x(t), M

so that we have the "modal" expansion:

x(-- ) a k(t)k (2.24)

and

E =) 1 2a(t 2 + (t)2) (2. 25)
k1
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Using this expansion in (2.16) we have

Wt + W a (t) = [*t,- [B*k(t), B*4, 1 (2.26)k k k kk

or,

(d t) + { [D + [B~o ,B*Ok}~ 2 a Wt -f Wt (2.27)k kF k k k)1a(t) + kk k

where

f k t) = ~ tD(t) , k k (t)[DO kr kJ + [B*(t) B*O

- a k (t) [B*O k B* kJI

Suppose now that for some k:

D k= 0 B*O k = 0

Then

Ax(t) a ak WO k

is a solution of (2.17), provided only that

a(t) + W 2 a (t) =0

k k k

and hence la k W1 does not go to zero as t +1 o; this takes care of the

necessity condition. Assume then that

2;k= [D kP $ + [B* k' B*

is nonzero. Then (2.27) can be "solved" to yield (assuming small damping

for simplicity):

(Jkt a kt sin X k t
akt W ak e Cos X + bk e A

t
-f W(t-s) f k(s) ds (2.28)

040
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where

-0k
e sin Xkt

%W (t) = I

xk

(-a k iX Lx are the roots of

k k

Now because:

[LDk(t) , _ k2 [Dk(t) , k(t) [Do kr 'k1

it follows from (2.23) that

f [(Dk(t), 12dt <
0

Hence a little analysis shows that

t
f W(t-s) rDk(s), k ] ds 0 as t
0k

By a similar reasoning, also

t

f W(t-s) rB**(s) ,B*O I ds 0~ 0s t C
0kas t

* Hence it follows that

t
E(t) a k t) 2- k W(t-s) k (s) ds (2.29)

0k
where

Eit) 0 as t-~

By integration by parts we obtain that

t
Eit) = a k t) + a k(0) W (t) + 2a kf W(t-c) a k(a) do

k k k



- --

Hence
t

a k(t) + 2ak f W(t-o) ak(a) do = W(t) (2.30)
0

where

B(t) * 0 as t

Solving (2.30) (using elementary Laplace transform techniques) we obtain

that

ak(t) 0 as t -

Differentiating (2.28) and proceeding in a similar way we can also show that

Ak(t) k 0 as t -01

Let

+k
k  = 

kk

- kk*

-iW k k

Then

lim [Y(t), (P ]  = lim [Y(t), 0 0
k kt-).0 t-0-0

*for each k, which is enough to imply that Y(t) converges weakly to zero.

Next we note that

Y(t) = S B(t) Y(0)

where S Bt) is the (strongly continuous contraction) semigroup generated

by

A - BB*

0.!
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which has a compact resolvent. Hence weak stability implies strong

stability [ 71:

IIY(t)IIE  = IISB (t) Y(O)IIE  0 . (2.31)

In particular we have (2.23) that

11,lY(o), f [Dk(t), k(t)] dt + f JIB'*(t112  dt
E 00o o

or,

F1Y(0)o = f [DY(t), Y(t)]E dt + f IIB*Y(t) I12  dt . (2.32)
o 0

Finally given any arbitrary initial condition Y(O), we can find an

approximating sequence {Y (0)} in the domain of A such that (2.31) holds

for the corresponding solution Y (t); and the result follows from then

estimate:

1 ;Y(t)IIE IS B(t) Y (0)11 + 1Y n(0) - Y(O)I EE B n EnE

REMARK 1. We note that if D = 0, our condition (2.14) is equivalent to

requiring (A- B) controllability (see [2]). Hence we would have strong

stability by a more general argument due to Benchimol [5]. If B = 0, then

condition (2.14) implies that Dok # 0 for any k, and we are then proving

*strong stability for the semigroup S(t).

Nonlinear Controllers

Let us now go on to consider a class of nonlinear controllers. Thus

we shall consider where K(-) in (2.13) is given by

&NON
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K(Y) =f(B*y 2

where

yl

m m
and f(-) maps R into R ,and satisfies the following conditions:

i) [f(u), ul > 0 for u 0

ii) If (u) Xu~

iii) f(-) is Lipschitz.

A typical example of f) is

f(u) v ;u = u.l v ( v.1

v. Y itan WiJU. ; Y., I. > 0

THEOREM 2.2. Suppose

[Do ke k 0 (2.14a)

for every k. Then the feedback control

u(t) -B..* f(B*k(t)) (2.33)

where

Yx (t)
Y~k) -

*(t)

yields asymptotic globalsti .

Proof. Under condition (2.14-, the semigroup SCI) generated by A
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in HE  is strongly stable. By virtue of the Lipschitz conditions on f(-),

existence and uniqueness of solution for each t > 0 is immediate, and the

solution is given by:

t
Y(t) = S(t) Y(0) + f S(t-O) Bf(B**(o)) do, 0 < t . (2.34)

0

Next we shall show that

Sf f(B.k(a)) 112 do < (2.35)
b' 0

For this purpose let us assume first that the initial condition Y(0) is in

the domain of the generator A, so that we have

MR(t) + Dk(t) + Bf(B*k(t)) + Ax(t) = 0

Defining the energy again as

1 IIY(t),12mE(t) = E

we have that

E(t) = -[Dk(t), x(t)] - [b(t), f((t))]

where

b(t) = B*x(t)

Since

we have that:

f [D*(t), k(t)] dt <
0

eq
01



and since we can write

* it follows that

f j*k(t)I1 2 dt <
0

But this implies that

00

and hence also

4 00

by virtue of our assumptions on f(-).

We now proceed as in the proof of the preceding theorem. Writing

2a k = [Dok kI

a. we have:

( t) + W2 a (t) + 2a i (t) -f (t) (2.36)
k k k k k k

where a kCt) is as before, and

f kCt) = [Dk(t), k ak(t) [D k' k I + [f(B*k(t)), B* k]I

since

f [Dk(t), k12dt + f[f(B*k(t)), BOk 12dt <
0 0

as before, we obtain

t
c(t) a k(t) + a(0)w (t) + 2 O "c) c)d

0k

% . . .. .
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where e(t) - 0 as t + G and the rest of the arguments follow. Hence

a k(t) + 0 as t +

k(t) + 0 as t +
k

for each k. Hence it follows that

Ax(t) - 0

Ak(t) - 0

Since A is compact, it follows that x(t) converges strongly to zero

(in H) . Similarly

AAt) - 0

implies that k(t) converges strongy to zero (in H). Hence Y(t) converges

weakly (in H ) to zero. Now

[Dk(t), k1  = [k(t) , D k]

implies that

Dx(t) - 0

Hence

AY(t) - 0

since A has a compact resolvent it follows that Y(t) converges strongly

(In HE) to zero.

0 Next we relax our assumption regarding the initial condition Y(O).

We begin by proving Lipschitz continuity of the solution with respect to

the initial condition. Thus let Y(t) denote the solution with initial

condition Y(0) and let

6e
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Y (t) M M(t) (Y (0)

Then let Y 1(0) ,Y2(0) 1w H Eand

M (t) (Y2 (0)) M(t) (Y1 (0)) = D (t) (Y2 (0) - 1 (0))

t
+ fSD(t-o) (Bf(B'y 2 (a) - Bf(B*Y 1(a))) da

0
Let

M(t) = 1Y2 (t) - Yl1(t)11 E

Then in view of our assumptions on f(-), we have

t
rn(t) 5 M(0) + yf m(a) do ; a 0

0

and hence by the usual analysis

yielding Lipschitz continuity. The continuity yields in turn

tt

OYt: 2 t - f [Drb,(s), fd(s)]d
00

and hence we obtain:

0 0
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Next we need to establish (2.36). But this follows readily from the fact

(2.11) holds in the weak sense. Hence we obtain that Y(t) converges

strongly to zero in HE for any initial Y(O) in HE .

REMARK. It would be of interest to establish strong stability under the

weaker condition (2.14). We note that the condition (2.14) is again obviously

necessary.

J
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